
I 
2 .  

r 

. . ,  
i 

7 94 
1 

‘ 8  s m  f 

’ e  
t L ++7$ ‘pATy/y&f 

(NASA cd d~ TMX O R  AD NOMKJERI 

PROPAGATION 
OF THE 

PRESSURE WAVES 
PRODUCED BY AURORAS 

BY 
KAICHLMAEDA 

DECEMBER 1964 

, I ’  , 
1 

Presented at the Second Benedum Earth Symposium 
Pittsburgh, Pennsy I van ia 
November 23-25, 1964 

\ 



PROPAGATION O F  THE PRESSURE WAVES 

X-640 - 64- 383  

PRODUCED B Y  AURORAS 

Kaichi Maeda 
Goddard Space Flight Center  

Greenbelt, Maryland 

Goddard Space Flight Cen te r  
Greenbelt , Maryland 

Presented  at  the Second Benedum E a r t h  Symposium, 
Pi t tsburgh,  Pennsylvania, November 2 3  -25 , 1964 



CONTENTS 

Page  

ii Abstract  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1 . Introduction 

2 . Equations of Atmospheric P r e s s u r e  Waves . . . . . . . . . . . . .  2 

2.1 Notations and Constants . . . . . . . . . . . . . . . . . . . . . .  2 

2.2 Fundamental Equations . . . . . . . . . . . . . . . . . . . . . . .  4 

3 . Solutions in the Isothermal  Atmosphere . . . . . . . . . . . . . . .  6 

3.1 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

3.2 Dispersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

4 . Solutions in the Non-Isothermal Atmosphere . . . . . . . . . . . .  10 

4.1 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

4.2 Dispersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

5 . Normal  Mode Calculation . . . . . . . . . . . . . . . . . . . . . . . .  19 

5.1 Multi-Isothermal Layer Model . . . . . . . . . . . . . . . . . .  20 

5.2 W.K.B. - Approximation . . . . . . . . . . . . . . . . . . . . . .  30 

5.3 Direct  Numerical  Integration . . . . . . . . . . . . . . . . . . .  34 

6 . Ddta Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

6.1 Power Spectrum Analysis . . . . . . . . . . . . . . . . . . . . .  39 

6.2 Wave F o r m  and Airy Phase  . . . . . . . . . . . . . . . . . . . .  46 

7 . Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47 

1 



Abstract  

As shown in previous paper (Maeda and Watanabe), periodic heat-  

ing around E-region in the polar upper a tmosphere  by a u r o r a l  par t ic les  

can be regarded a s  the source  of very  long acoustic type atmospheric  

p re s su re  waves observable  a t  the ground. 

these p re s su re  waves attenuate rapidly outside the source  in the i so-  

It was shown, however, that 

thermal  atmosphere.  On the other  hand, in the actual  a tmosphere ,  these 

waves propagate horizontally through the ducting, which consis ts  of two 

channels, corresponding to the atmospheric  tempera ture  minima a t  the 

mesopause and the tropopause,  respectively.  It is shown that for  the 

propagation of 100 sec  waves,  upper channel i s  effective in summer t ime ,  

while lower one is effective in winter in the polar upper a tmosphere.  I t  

i s  a l so  shown that the traveling p r e s s u r e  waves assoc ia ted  with a u r o r a l  

activity is not necessar i ly  l imited in the acoustic mode, but somet imes  

extended to gravity ( thermobar ic )  mode. This is par t ly  due to the exis t -  

ence of la rge  positive lapse r a t e s  l aye r s  such a s  upper pa r t  of s t r a to -  

sphere  and in the thermosphere.  As a consequence, c l ea r  sinusoidal 

oscil lations,  which appear occasionally with per iods of group velocity 

minima (around 5 min) ,  can be ascr ibed  to Airy phase. 

the data obtained a t  the NBS-stations in Washington, D.C. on July 15, 

As an  example,  

ii 



PROPAGATION O F  THE PRESSURE WAVES 

PRODUCED BY AURORAS 

1. Introduction 

During intervals  of high geomagnetic activity,  t r a ins  of long per iod 

acoustic waves have been detected at the ground (Chrzanowski et. al. 

1961). Investigating these phenomena, we found that these travell ing 

p r e s s u r e  waves must  be originated by a u r o r a l  act ivi t ies  and that one of 

the mos t  plausible generation mechanisms of these atmospheric  p r e s -  

s u r e  waves is periodic heating of E-region in  the polar upper a tmosphere  

caused by imping au ro ra l  e lectrons (Maeda & Watanabe,* 1964a, b). 

Correspondences between aurora l  act ivi t ies  and appearances of 

infrasonic waves a r e  fur ther  confirmed by the special  observation per  - 
fo rmed  inside of au ro ra l  zone (Campbell and Young, 1963). Assuming 

a cer ta in  distribution of au ro ra l  heating, which is very  s imi la r  to the 

observed  au ro ra l  luminosity distribution, we could show relations be- 

tween input t he rma l  energy,  which can be assumed as some fract ions 

of incident energy flux of au ro ra l  e lectrons,  and intensity of acoustic 

wave a t  the ground, with r e spec t  to the i so thermal  a tmosphere.  We 

found, however,  that the intensit ies of these  long period p r e s s u r e  waves 

produced by a u r o r a l  heating of polar upper air attenuate very rapidly 

outside of the source region. 

.I. -,- 
In late, this paper w i l l  be referred as M-W, 1. 
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Although the au ro ra l  activit ies a r e  spread  toward low latitudes a t  

the time when these p r e s s u r e  waves a r e  detected a t  the ground, hori-  

zontal propagations of these waves in the atmosphere outside of the 

source region a r e  important to explain the diurnal variation of a r r i v a l  

direction of the wave observed a t  NBS-stations in Washington, D.C. 

Since previous calculations were  based on an i so thermal  a tmosphere ,  

contribution of a tmospheric  thermal  s t ruc ture  on the wave -propagation 

was not considered. 

I t  is, therefore ,  a main purpose of this paper  to d iscuss  the effect 

of atmospheric thermal  s t ruc tu re  on the propagations of au ro ra l  in f ra -  

sonic waves. 

The traveling p r e s s u r e  waves which appear  a t  the t ime of s t rong 

au ro ra l  activit ies a r e  quite difficult f r o m  well-known long period p r e s -  

s u r e  waves produced by other  phenomena such a s  l a rge  me teo r ,  volcano 

eruption o r  huge bomb explosion in the atmosphere.  

charac te r  of a tmospheric  wave, intensity,  duration, f o r m s  and their  t ime  

variation of these waves a r e  complicated. However, some peculiar fea-  

t u r e s  can be explained by the known dispers ion relat ions.  

discussed in the las t  chapter.  

Due to the d ispers ive  

This  will be 

2.  

2.1 Notations and Constants 

Equations of Atmospheric P r e s s u r e  Waves 

c ,  

D / D t ,  the Euler ian der ivat ive,  - +  v * V  

sound velocity in the a i r  in k m / s e c  

a 
a t  
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g(o ,  -g), accelerat ion of gravity where g = 9.8*10'3 kmlsec. '  

H, sca le  height in km. 

f ,  resul tant  of a l l  external  forces.  

k, horizontal  wave number , corresponding to horizontal  wave 

length h ( in  km) ,  i.e. k = 2n/h in km-' . 
sma l l  depar ture  f r o m  static value of p r e s s u r e ,  density and p, p, T; 

t empera ture  function of time (t)  and altitude ( z ) .  

P,, po, To, s ta t ic  p r e s s u r e ,  density and absolute tempera ture ,  which a r e  

the function of altitude z , only, in dynes/cm2 , g/cm3 and OK, 

r e spec tive ly . 
total  p r e s s u r e ,  density and absolute tempera ture ,  i.e. 

p = p 0  tp, F = p o  t p ,  T = T o  tT 

gas constant of air ,  2.87 le4 in km2 sec" OK-' . 

- 
p, F, T, 

- - 

R, 

V=V(u, w); velocity vector ,  where u is  horizontal  (southward),  and w is 
- -  

ver t ica l  (upward) component of air motion in  km/sec .  

ra t io  of specific heat  of a i r ,  Cp/Cv, where  Cp and Cv a r e  the 

specific heat of air a t  constant p r e s s u r e  and that a t  constant 

volume n , r e spec t ive ly . 
horizontal  wave length of p re s su re  wave is km. 

per iod of p r e s s u r e  wave in sec.  

the divergence of velocity in sec" . i.e. X=au/ax+aW/az 

angular f requency of p re s su re  wave corresponding to per iod 

of wave r ( sec )  in sec" . 

YI 

A, 

7, 

x(w, z ) ,  

w, 
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2.2 Fundamental Equations 

Equation of a tmospheric  waves is der ived f rom the following three  

fundamental equations; namely the equation of motion 

the equation of continuity 

and the equation of thermodynamics 

Since the excitation of au ro ra l  infrasonic waves occur s  mainly along 

au ro ra l  zone, which i s  extended in a cer ta in  lati tude,  the propagation of 

the wave along meridian toward low lati tudes can be t rea ted  in two di-  

mensions,  taking horizontal  axis  x southward and ver t ica l  axis  z 

upward. 

Periodof wave in our  present  subject i s  l e s s  than seve ra l  ten min-  

u tes ,  therefore ,  the Coriolis force  due to the e a r t h ' s  rotation and all 

other  external forces  except gravity,  can be neglected. 

motion (2.1) then becomes 

The equation of 

and 

4 
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The equation of continuity (2.2) fo r  the first o r d e r  approximation 

is 

where  X = X (p, Z ,  t )  is the velocity divergence. 

By making use  of Eq. (2.5), the equation of thermodynamics (2.3) 

can be wri t ten a s  

Assuming that u ,  w ,  p and p a r e  proportional to a factor ei(wt’kt) 

we get an equation for the ver t ica l  variation of X(W, z ) .  

L ,  

where  

a n d  

dx 2N(z) -+ M2(z) X = 0 d2X 
dz2 dz 
- -  

(2.10) 

(2.11) 

(2.12)  2 - f z  2 g dc2 
c2 dz 

W B  -- (y  - 1) + - - r  - 
C2 

wB is called Brunt angular frequency o r  Vaisala angular frequency. 

This  can  a l so  be writ ten as 

d I n @  
dz 

a; = g- 

where  0 is  potential t empera ture  (Gossard ,  1962). 

5 
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3 .  Solutions in the Isothermal  Atmosphere 

In the case  of i so thermal  a tmosphere,  dH/dz = 0 and N ,  M2 in  

Eq. (2.8) a r e  constant. 

(2 .8 )  is given by M - W, 1. 

Then as discussed in  M - W ,  1 the solution of 

X ( w , z )  = eNz ( A e - p Z  t Be/ lz )  (3.1) 

where A and B a r e  constants which should be determined by boundary 

conditions. 

o r  

wA 

be named Hines '  angular frequency for  a simplicity (Hines,  1964). 

i s  called atmospheric  acoustic resonance angular frequency o r  can 

The solution (3.1) is osci l la tory o r  exponential function of z, i f  

P -  * - N2 - M2 is negative or positive, respectively.  Namely, if 

where  

( w b  is Brunt-Vaisala Angular frequency in the i so thermal  atmosphere.)  

Then p is r ea l  and solution (3.1) cor responds  to  ex terna l  ( o r  ex- 

ponential) solution, which is called non-cellular solution previously 

6 



(M-W,1, Maeda, 1964) s t r ic t ly  speaking, cel lular  wave is standing wave 

a s  named by Martyn (1950) and has been used by many worke r s  

(Yamanoto; 1956, Gossard ,  1962). It would be therefore ,  bet ter  to avoid 

this  nomenclature unless we consider the same c a s e  of cel lular  and non- 

cel lular  waves in  the atmosphere,  a s  discussed by Martyn (Hines,  1964). 

If N2 - M2 < 0 ,  then it can  be writ ten that p = i q ,  where 

is the wave number in ver t ica l  direction. 

in th i s  ca se  

The solution (3.1) is writ ten 

X ( W , Z )  = eNE (Ae-i’lZ + Be’?’) (3.7) 

This cor responds  to internal  ( o r  sinusoidal) waves,  which a r e  a l so  

cal led cel lular  solutions (Yamanoto, 1956, Gossard  1962, M-W,1 , Maeda 

1964). 

avoided unless  it is used in  the same sense  a s  defined by Martyn (1950). 

Due to the r eason  mentioned above, this  nomenclature should be 

3.1 Diagnostics. 

Since k is the wave number in  horizontal  direction, while 7 is the 

one in  ver t ica l  direction a s  shown in (3.7), Eq. (3.6) gives the propaga- 

t ion sur face  ( o r  propagation line i n x  - z cross-sec t ion) .  Namely, as 

d iscussed  by seve ra l  authors  (Hines 1960, Eckar t  1960, Tolstoy 1963 

and M-W,1); 

7 



(i) if 

a > wA (> 

propagation surface is ellipsoid with a major  axis  in x-direction, 

which half length kc is given by 

and a minor  axis in z-direction, which is also rotation axis of the 

ellipsoid and the half length 77 is 
C 

1 / 2  
(a2 - a;) 

(3.9) 

(ii) i f  

< a b  (<a*), 

propagation surface is hyperboloid with semi-major  axis  in x- 

direction, which is also given by (3.8) o r  

and this mode i s  called internal gravity,  o r  thermobasic  wave. 

( i i i )  i f  

a* > > Wb 

vertical  wave number 77 defiried by Eq. (3.6) i s  imaginary o r  p 

in Eq. ( 3 . 1 )  i s  r e a l ,  indicating the wave motion in ver t ical  d i r ec -  

tion i s  not oscil latory.  

8 



Although two types of waves within this frequency range in the i so-  

t he rma l  a tmosphere,  which satisfy the boundary conditions at the ground 

and a t  infinity, a r e  shown by Peker i s  (1948 and see  M - W , 1 ) ,  only one 

type called Lambs '  wave (Lamb 1932, 1948) can exis t  in this frequency 

range (Hunt e t  a1 1960). 

tion (Ecka r t  1960 p. 105). 

This wave propagates only in horizontal  d i r ec -  

3.2 Dispersions 

A s  i t  can be seen f rom E d .  (3.6) ver t ica l  and horizontal  wave num- 

b e r s  a r e  functions of angular frequency, i.e., acoustic mode and internal  

gravity mode a r e  both dispersive.  

Phase  velocity in horizontal direction is given f r o m  Eq. (3.6) 

for acoustic mode 
w2 - (3.7) 

F r o m  this equation we can see  that a t  high frequency i.e. at + 

Vph = c 

Vph - 03. 

while a s  w -+ wA 

Similar ly  for thermobasic  mode, we can wr i te  f rom Eq. (3.6) 

Vph = c r w* - w2 
F r o m  this equation, we can see that at low frequency i.e. at w --. 0 

vp, = c ' - 2 0.904 c 
wA 
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while as  w * wb 

Vph -+ 0 .  

On the other  hand, horizontal  group velocit ies a r e  given f r o m  

Eq. (3.6) f o r  acoustic mode 

This  shows that at high frequency i.e. w + co 

v = c  
g 

while as -t wA 

vg = 0 

Similarly for  thermobar ic  mode 

( 3 . 1 0 )  

and this gives a t  low frequency i.e. w .-. 0 

wb 
v g = c . -  WA - 0.904 c 

while at w .+ wb V = 0. 
e 

Summarizing above relation, we can  see  a tmospher ic  acoust ic  wave 

approaches usual  sound wave at high frequency of which phase and group 

velocity both approach round velocity c = fm. On the other  hand as w 

approaches to wA phase velocity i n c r e a s e s  to infinity while group velocity 

tends to zero.  At low frequency both phase and group velocity of t he rmo-  

ba r i c  wave converge to 

10 



while as w -+ ab, phase and group velocity approaches to zero.  

These  a r e  shown in Fig. 1 for  T = 300’K i so thermal  a tmosphere.  

4. Solutions in the Non-Isothermal Atmosphere 

The second t e r m  in Eq. (2.8) can be eliminated by the following 

t ransform;  

. .  

d Y -  1 or - - -  
dz H(z) 

and 

then Eq. (2.8) becomes 

where  

K2 H2 q 2  

and 

(4.4) 

wA and wB a r e  the same  a s  the one given by ( 3 . 3 )  and (2.12),  respectively.  

It should be noticed that wA i s  a function of a tmospheric  tempera ture  

T( z )  only, but % depends not only on T( z )  but a l so  on the tempera ture  

gradient dT /dz  a t  each altitude z ,  a s  shown by Eq. (2.12). Since there  

11 



400 

300 

200 

lo(  

T =300°K I 
C o =  347.2 I 

I 

- GROUP VELOCITY 

- - - PHASE VELOCITY 

I I 1 I I l l  1 
20 50 100 

THERMOBARIC WAVE 

' -  B 
PERIOD T IN SEC 

500 

Figure 1-Horizontal wave velocities in the isothermal atmosphere (T = 300'K and C = 0.347 
km/sec) against period of the wave T (in. sec) full l ines and dashed lines are phase velocities 
and group ve I oc i t i  es, re spec t i ve I y . 
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has  been a confusion about the definition of wA as pointed out by Hines 

(1964), i t  would be worthwhile to see the relat ion between wA and wB. 

Rewriting the right hand side of Eq. (2.12), we get 

Using Eq. ( 3 . 3 ) ,  this becomes 

where  

and 

g 
R 
- = 3 4 . 2  "C/xm 

Therefore ,  i f  we wr i te  

(4.6)* 

*Eq. (4.6) might correspond to Eq. (4), N: = N 2  + r2c2 in Eckart's book (p. 108). However, as 
can be seen from (4.7), Am2 i s  not necessarily positive, a s  r2c2 is. 

** Negative value of this value is  called auto-convective lapse rate in  meteorology. 
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W [see-'] 

Figure 2-Hines' angular fre uency "A 

and Brunt-Varsola angular frequency WB 

as a function of crltitude z, for the verti- 
cal temperature distribution T ( z )  shown 
by ful l  line in Fig.  4. 

i 2.0 2.5 x 

W [sec - l )  
0-* 

Figure 3-The same as F ig .  2 for the vertical temperature 
distribution shown in F ig .  4 by dashed line. 
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but 

In Fig.  2 and Fig. 3 wA and a,-, a r e  shown a s  a function of altitude 

z ,  corresponding to mean polar atmosphere in summer  and in winter ,  

which tempera ture  distributions a r e  shown in Fig. 4 by full and dashed 

l ines ,  respectively.  

As can be seen  f rom these figures,  in the actual a tmosphere  the re  

a r e  in general  two domains when % exceeds w A ,  i.e., in  the upper pa r t  

of the s t ra tosphere  and in  the thermosphere.  

4.1 Diagnostics 

A s  far a s  wB < w A ,  diagnostics diagrams a r e  essent ia l ly  the same  

as in  the i so thermal  a tmosphere as discussed in M-W,1 (Ecka r t  1960 

p. 108) and propagation surface for  two modes (acoustic and internal  

gravity waves) a r e  ellipsoid and hyperboloid, respect ively (Ecka r t  1960, 

p. 110, Hines 1960, Obayashi 1963). 

However, as shown in previous section (Fig.  2 & 3), wB becomes 

l a r g e r  than wA in the upper s t ra tosphere and in the thermosphere.  In 

th i s  domain propagation sur faces  in y-z space a r e  a s  follows: 

15 



(i) w > wB > wA 

F r o m  Eq. (4.5), we can see  propagation sur face  is ellipsoid, i.e., 

k2 T2  - + - =  1 
k,' .I," 

where 

and 

(4.10) 

(4.11) 

(4.12) 

This corresponding acoustic mode d iscussed  in (i),  section 3.1. 

(ii) w < wA < wB 

F r o m  Eq. (4.5) the propagation sur face  is hyperboloid 

k2 T2  - - - =  1 
k', .If 

where  

and 

2 
WA - u 2  

.f = 
C 2  

(4.13) 

(4.14) 

(4.15) 

Propagation of this type of wave i s  l imited in horizontal  direct ion,  

corresponding to internal  gravity ( o r  thermobasic)  waves d iscussed  in 

( i i )  section 3.1. 

16 



(iii) w A  < w < wB 

The propagation sur face  is, then 

where 

w2 - w: 
2 7 ,  = 

C2 

and 

A s  can be seen f rom (4.16), i.e. 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

Namely, propagation of this type of wave is  a hyperboloid l imited 

in ver t ica l  direction with an  asymptotic ape r tu re  

(4.20) 

and ver t ica l  wave number must  be la rger  than a cer ta in  value of 7 , .  

In the atmosphere with positive tempera ture  gradient l e s s  than 

2.2'C/km, propagation of these frequency ranges a r e  not permit ted in  

ver t ica l  direction a s  well a s  in the case  of i so thermal  a tmosphere.  

Namely, no r e a l  value of ver t ical  wave number q does exist .  

Since H 2  > 0,  sign of K 2  i s  the same  a s  q 2 .  Therefore ,  propaga- 

t ions permi t ted  in y-x space a r e  also permi t ted  in 2;-x space.  In other  

words ,  both these two coordinated sys t ems  a r e  topologically equivalent. 

17 



It is interest ing to note that when d T / d z  = Pc. Then, writing wA = wB = w 0 

f r o m  Eq. (4.5) , we get 

(4.16) 

( i )  i f  w > wo , 77 is r e a l  a s  f a r  a s  k < w / c ,  and propagation sur face  is 

ellipsoid, corresponding to acoustic mode. 

( i i )  if w < wo, 

hyperboloid l imited in horizontal  direction within asymptotic ape r tu re  

7 i s  r e a l  only for  k > w,'c and propagation sur face  is 

(4.17) 

Therefore ,  a t  w = w o ,  

propagation vector for  this frequency. 

ec = 0 ,  i.e., t he re  is no ver t ical  component of 

However, above discussion shows that if dT /dz  > rc no forbidden 

frequency exis ts  in this  layer  of a tmosphere.  In this r epor t ,  acoustic 

modes and gravity modes a r e  continuous and can be called acoust ic-  

gravity wave s. 

4.2 Dispersion 

If dT/dZ < Tc, uB < wA then d ispers ion  relat ions a r e  the same  a s  

before ( 3 . 2 )  and corresponding horizontal  phase and group velocity a r e  given 

by replacing wb by uB. 

If dT/dZ > rc, however, wB > wA and ver t ica l  phase and group 

velocities a r e  given a s  follows: 

18 



c .  

(i) o'> wB > wA 

F r o m  Eq. (4.5), phase velocity in  ver t ica l  direct ion is 

w w * C  - -  

fzq 'ph - y -  

A s  w - 0 ,  Vph + c , while w - wA Vph -, co , but finite a t  w = wB 

Group velocity in ver t ica l  direction is f r o m  Eq. (4.5) 

(4.18) 

(4.19) 

As w -, a, Vg - c ,  while w .+ wA Vg - 0. 
(ii) wB > w > wA 

Vph and Vg a r e  the same  a s  (4.18) and (4.19), respectively.  

(iii) wB > wA > w 

No r e a l  value of 7 exis ts  in  the frequency range and wave propaga- 

tion is l imited in horizontal  direction, corresponding thermobaric  wave. 

5. Normal  Mode Calculation 

A s  mentioned in the introduction, the previous calculation (M-W ,1) 

shows that the p r e s s u r e  wave produced by periodical au ro ra l  heating 

attenuates quite rapidly outside the source.  

p r e s s u r e  waves a r e  observed f a r  outside the au ro ra l  zone during high 

geomagnetic activit ies , showing peculiar diurnal  variation in their  ar - 
r iva l  direction (Chrzanowski et a1 1961), indicates the importance of 

ducting for horizontal  propagation of these  waves in  the atmosphere.  

The fact  that  these traveling 
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As shown in Fig .  4, t he re  a r e  two t empera tu re  minima in the e a r t h ' s  

a tmosphere,  i.e., s t ra topause and mesopause,  which a r e  well known 

channels for sound wave propagation. 

a t  the layer where tempera ture  i s  minimum, ducting of sound waves 

a r e  easily explained by ray-tracing by making use of Snel l ' s  law ( o r  

F e r m a t  Pr inciple) .  

Since sound velocity is minimum 

In present  problem, period of the wave is longer than 10 sec. ,  and 

corresponding wave length is longer than 3 km. 

Ray-theory is inapplicable but the ducting can be shown by the wave 

theory. 

Therefore ,  the so-called 

5.1 Multi-Isothermal-Layer Model 

As discussed in the previous paper (M-W,1) and in section 3, the 

multiplication factors  N ( z )  and M 2 ( z )  in Eq. (2.8) a r e  constant f o r  the 

isothermal  a tmosphere,  and solution is very  s imple a s  shown by Eq. 

(3.1), where two constant f a c t o r s  can be determined by two boundary 

conditions. 

isothermal  l aye r s ,  we can get a solution for  this  model a tmosphere ,  

connecting r igorous solutions a t  each layer  by two boundary condition 

between each layer .  

these  conditions a r e  a s  follows; 

Therefore ,  i f  we a s sume  the atmosphere consisting of many 

If we a s sume  n - l aye r s ,  numbering f rom the bottom, 

( i )  At the ground, ver t ical  velocity vanishes ,  i.e., 

(ii) 

be continuous, i.e., 

Between two l a y e r s ,  p r e s s u r e  var ia t ion and ver t ica l  velocity mus t  
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Figure 4-Vertical temperature distribution and lapse rate in the polar region for 
summer (full line) and for winter (dashed line). 
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Pn - - Pn-1 and Wn = Wn-,  

P, = Po w, = wo = W n z o  

( i i i )  a t  the top of a tmosphere,  kinetic energy (density) mus t  be finite 

i.e., p ; ~ :  = c o n s t .  ( c o n s t .  C w ) .  

Thus, we can determ.ine 2n-constants in the solutions of the type 

(3.1) for n-layers .  

This technique has  been developed by Pfiffer (1962) by making use  

of machine computer ,  and i s  applied for the interpretat ion of acoustic 

gravity wave propagation produced by A-bomb bur s t  (Pf i f fer  and 

Zarichny, 1962, 1963). 

Since the foundation of mult i - isothermal  layer  approximation seems  

neither justified nor well established (Hines,  1964), only the following 

three- isothermal  layer  model i s  considered to see  the ducting mechanism 

a s  follows: 

The wave function (velocity divergence) in each layer  can be 

wri t ten f rom Eq. (3.1) a s ,  

n z  
x , ( z )  = ~e 1 + ~ e ” l ~  o 2 z 2 

X , ( z )  = A e  + B e n 2  z1 I z 5 z 2  
n z  * z  

n; z Z 2 < Z 5 m  
X , ( z )  = R e n J z  + e 
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where  

~4 = [ w2 ci - - k2 (l -:)I”’ 
(5.4) 

Suffix .e indicates the number of l aye r s  f r o m  the bottom up, i.e., 

= 1,  2 and 3 .  

Incident wave at the top layer  is  a s sumed  to be downward with a 
rl; z 

unit amplitude,  e 

Since propagation surface in the i so thermal  layer  for  acoustic 

mode ( w  > wA > w B )  is ell iptic,  a s  shown in Fig. 5, horizontal  wave 

number k in the top layer  gives the direction of wave propagation. 

The calculations a r e  done for  T = 100 s e c ,  taking a s  a parameter .  Five 

constants appearing in Eq. (5.1) a r e  uniquely determined by the following 

five boundary conditions, i.e., 

W l ( Z  = 0)  = 0 

and 
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Figure 5-Cross-section of propagation surface i n  x-z plane for the isothermal atmos- 
phere i n  the different temperature. k and -rj stand for the wave number i n  horizontal 

(x-axis) direct ion and vert ical  (z-axis) direction, respectively. 
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where  ver t ica l  velocity in  each layer  Wn ( z )  and p r e s s u r e  variation Pn(z) 

a r e  given by 

(5.7) 
(g2k2 - w4) W , ( Z )  = w2C: d - Xn t g C i  

dx 

and 

respectively.  

Assuming z1 = 50 km and z 2  = 80 km,  amplitudes [ A I  and IC1 a r e  

shown against  k /kc  for  two c a s e s  of tempera ture  distributions in Fig. 6 

and Fig. 7, in which tempera ture  in  each layer  a r e  a lso shown in the 

r ight  hand side. Hatched domain indicates the wave of its energy is 

t rapped in the middle l aye r ,  while other domains between curves  IC1 

and IAl corresponds  to the wave trapped in the bottom. 

Fig.  7 shows that if  the temperature  of the middle layer  is higher 

than those of other  l aye r s ,  no ducting occur s  in the middle layer .  How- 

e v e r ,  as will be discussed l a t e r ,  other modes which correspond to 

in te rna l  gravity ( thermobaric)  wave has different mechanism for  ducting. 

This  can be seen f r o m  Fig .  8,  in  which angular frequency of the 

t ravel ing p r e s s u r e  wave w is plotted against  horizontal  wave number k 

(diagnostic diagram) f o r  the isothermal  a tmospheres  with a different 

tempera ture .  Upper le f t  p a r t  corresponds to acoustic mode while lower 

r ight  p a r t  stands f o r  internal  gravity ( thermobar ic )  mode. As shown by 

horizontal  line ( f o r  example r = 100 sec ) ,  acoustic waves propagating 
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F igure 6-Amplitudes of upward propagating waves in the middle layer \ A  I, and i n  the bottom 
layer IC1 for a model atmosphere(temperature distr ibution) shown in the r ight hand side. F u l l  
l ine and dashed l ine indicate ] A  I and IC 1 ,  respectively. The rat io of horizontal wave number 
in  the top layer, k, to the c r i t i ca l  valuekc i s  taken ashor izontal  axis, which corresponds a lso  
to thedirect ion of propagation i.e., k/kc 2 cos-1 i s  a zenith angle ofpropagation direction. 
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Figure 8-Diagnostic diagram for the isothermal atmospheres with different temperatures. Upper 
left  and lower right domain corresponds to acoustic wave and internal gravity (or thermobaric) 
wave, respectively. 
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nearly horizontal  direction, namely horizontal  wave number k is very  

close to a c r i t i ca l  value kc, in a cold layer  ( for  example T = 100°K) does 

not propagate into w a r m e r  layer (for example T = 300°K) , of which c r i t -  

ical  wave number kc is l e s s  than k. Since 774 becomes imaginary if  

k > kc as can be seen  f r o m  Eq. (5.4), the waves propagating in this  

layer  with these wave numbers  a r e  not osci l la tory any m o r e  but eva-  

nescent.  

ness  of the layer  ( for  example,  for  7 = 100 sec. ,  h 2 30 km) ,  some 

fract ions of wave energy can penetrate the b a r r i e r  of w a r m  l aye r ,  which 

is an exact analogy to "Tunnel effect" in quantum mechanics.  

r ea son  there  is  no forbidden direction in the propagation f rom w a r m  

layer  to cold layer .  Thus,  a s  f a r  as angular frequency is l a r g e r  than 

wA (i.e. , period of the wave is shorter  than rA = 27r /wA ) , this  mode of 

wave is t rapped in the layer  of minimum tempera ture .  

However, the wavelength is quite long as compared with thick- 

By s imi l a r  

If period T exceeds r A ,  however, r a the r  r e v e r s e  situation occur s ,  

which can be seen  also f r o m  Fig. 8. Namely, 

(i) 

wave of which period is very  close to rA 

gate into w a r m e r  layer  in any direction and vice versa .  

Since rA is shor te r  in colder layer ( s e e  Eq. (5.5)or Eq. (3.3)) , the 

in cold layer  does not propa-  

(ii) If the period of the wave 7 exceed Brunt period rB(= 2n/wB) ,  

any wave motion in coldest  layer  can propagate into w a r m e r  layer  in  

any direction. In this respec t ,  ducting for  thermobaric  mode is inverse  

of acoust ic  mode,  and most  of the kinetic energy of these long per iod 



waves can be concentrated in the upper par t  ( thermosphere)  and lower 

pa r t  (near  s t ra topause and bottom of t roposphere) ,  a s  shown by Pfiffer 

and Zarichny (1963). 

5.2 W.K.B. - Approximation 

A s  descr ibed in  previous section 4, the wave equation in non-isothermal 

a tmosphere (3.1) is wri t ten a s  (4.8), i.e., 

where 

i f  

o r  

d2'(y) t K2(y) +(y)  = 0 
dY2 

K2 = 7' - H 2 ( z )  

<< 1 (5.10) 

(5.1 1) 

solution of (5.8) can be given by the so-cal led W.K.B - approximation 

( for  example, Budden 1961), that  i s  

(i) for  a range of y, where 7' > 0 

+(y)  2C;K'1/2  exp - i ly K(y') dy' + C, K"l2 exp i l y K ( y ' )  dy' (5.12) 

(ii) for a range of y ,  where 7 2  < 0 

(5.13) 

Those two types of solutions can be connected by making use  of Airy 

function a t  the boundaries,  where K(y) L 0 .  If the domains where 
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q2 > 0 i s  l imited by two solutions of K(yl) = K(y,) = 0 ,  the normal  

mode condition is given f rom (5.12) a s  

Jy: K(y) dy = (n -$)n (5.14) 

where n is a positive integer.  

Since dy = dz/H(z) , the left side of Eq. (5.14) i s  wri t ten a s  an in- 

tegra l  by altitude z ,  i.e., 

q(z)  dz = (n -+)n I:' (5.15) 

In F ig .  9(a)  and (b) K2(z) i s  plotted against  z for  tempera ture  

distributions shown in F i g .  4 for 7 = 100 sec.  F o r  acoustic mode, hor -  

izontal wave number i s  l imited 0 < k < kc 

wave length A i s  co > h > h c .  

A c ,  corresponding to horizontal propagation. 

zontal propagation for T = 100 sec  wave i s  ra ther  concentrated in meso-  

sphere  in summer t ime and in s t ra tosphere in wintertime in polar region 

(Maeda, 1964). 

, corresponding horizontal  

Namely, t he re  i s  a shor tes t  wavelength 

Fig. 9 shows that ho r i -  

Normal  mode condition (5.15) is useful to find normal  mode f r e -  

quency o r  period i f  the c r i te r ion  (5.10) o r  (5.11) i s  valid. 

Since H (  z) = YRT( z) , inequality (5.11) i s  writ ten also 

(5.16) 
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F o r  7 = 100 sec.  T ( z ) =  300°K, 71 2 6 .-. -q .T 2 18. As shown in  

Fig.  4, a t  the lower pa r t  of thermosphere  (around 90 km) and in meso-  

sphere (around 60 km) ,  I d T / d z (  ‘2 5. Therefore ,  W.K.B. approximation 

for these long period waves i s  not good. 

Thus, r igorous numerical  integration i s  applied for the wave equa- 

tion (2.8). 

5.3 Direct Numerical Integration 

Assuming incident downward wave a t  z = 100 km,  solution of Eq. (2.8) 

i s  computed numerically by means  of Runge-Kutta method. 

a r y  condition a t  the ground is W = 0,  solution must  satisfy the condition 

( f rom Eq. 5.7). 

Since bound- 

h = O a t  z = O  
dX 
d z  

and for ver t ical  propagation 

(5.17) 

(5.18) 

I n  Fig. 10 ,  some re su l t s  of the wave period 7 = 100 sec.  a r e  shown 

for  a model of ver t ical  t empera ture  distributions shown in the left side. 

In the Figure I -A corresponds i so thermal  a tmosphere ,  11-A stands for  

isothermal  layer  covered by w a r m e r  layer  I1 above 80 km,  while between 

60 km and 80 km is a constant positive lapse r a t e  l aye r ,  and I - B  has  a 

temperature  minimum a t  50 km. 
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Results are  shown only for  the first mode. It is obvious that the 

amplitude of the wave, which sa t i s f ies  the boundary condition at the 

ground, is l a rges t  in the i so thermal  a tmosphere.  

6. Data Analysis 

Examples of traveling p r e s s u r e  waves during high geomagnetic 

activit ies recorded at the ground have been repor ted  by Chrzanawski 

e t  a1 (1961) for  observat ions at the NBS-station in  Washington, D.C., 

and by Campbell and Young for  the observat ion made a t  Alaska ( inside 

of au ro ra l  zone). 

As it i s  pointed out a t  the previous section (4.1 and 4.2), two modes 

of a tmosphere internal  p r e s s u r e  waves,  i.e., acoustic and thermobasic  

mode,  a r e  continuous o r  overlapped a t  cer ta in  frequency ranges  in the 

actual  (non-isothermal) a tmosphere.  This can be seen  f r o m  reco rded  

data. F o r  this  purpose,  we per formed power spec t rum analysis for  the 

data ,  recorded a t  the NBS-stations in  Washington, D.C., for  a per iod 

between 21:OO and 24:OO U T  on July 15, 1960. 

records  in  o r d e r  to fix the a r r i v a l  direct ion of the wave a re  shown in 

Fig. 11, and Kp-index around this  per iod is shown in Fig.  12 ,  i n  which 

the duration of the data shown in Fig .  11 is indicated by an a r row.  

Superposed pr ints  of these 

It  should be noted the amplitude of these  a u r o r a l  p r e s s u r e  waves is 

of the o rde r  of one to ten d y n e / c m 2 ,  while p r e s s u r e  waves produced by 

a large explosion (volcano, me teo r  and A-bomb) a re  of the o r d e r  of 

severa l  thousands dyne /cm2  a t  a dis tance of s e v e r a l  thousands k m  f r o m  
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the source.  

waves appear  f i r s t  for acoustic mode and longer waves appear  first for  

internal  gravity waves. 

According to dispers ion curves shown in Fig. 1 ,  shor te r  

6.1 Power Spectrum Analysis 

Details of this method a r e  well  explained in a book wri t ten by 

Blackman and Tukey (1958) and have been applied many authors  

Panofsky and Liethbridge, 1958; Ness e t  a1 1961, Ness ,  1962, S te rn  

1962). 

In present  analysis ,  we applied the same  method used  by P ie r son  

and Marks  (1952) for analysis of ocean-wave records .  Namely, non- 

normalized auto -correlat ion function Qp is calculated by the formula 

N-Ll 

where P ( t n )  and P(tn-,) a r e  the readings of p r e s s u r e  wave r eco rd  at 

t ime  tn  and t,-, . N is the total number of reading and m is the total  

number of shifting. 

One example of Qp is shown in Fig. 13, computed for  a period indi- 

cated by number 1 in Fig. 11. 

is given by 

Then raw-est imate  of power spec t rum 

where  Qp ( p  = 0 ,  1 ,  . . m) is given by (6.1) and m is the total  number of 

shifting . 
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Figure 13-An example of non-normalized auto-correlation curve for period shown in F ig .  1 1 .  The 
total number of reading N, and number of shifting m, are 744 and 60, respectively, while digit ized 
reading interval A t  i s  15 sec. 
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It is a s sumed  f o r  these analyses that r eco rded  p r e s s u r e  variations 

a r e  quasi-s ta t ionary and that the period of the wave is f a r  sho r t e r  than 

the length of the period used for  analysis.  Str ic t ly  speaking, none of 

these  is satisfied and the re  is an  e r r o r  due to the difference between 

th is  assumption and real situation, par t icular ly  d i sc re t e  reading by 

digitization and a finite length of the data. 

reduced by making use  of a f i l ter .  One of the s imples t  f i l t e rs  used 

p resen t  computation, and the r e su l t  i s  given by 

This e r r o r  can be,  however,  

L, = 0 . 2 3  Lh-l + 0.54 L, + 0 . 2 3  Lh+l 

(h  = 0 ,  1, .-.rn) 

Namely, this is essent ia l ly  the same running weight average.  L, 

a r e  shown in F i g .  14, corresponding to auto-correlat ion function shown 

in Fig.  13. 

and U, 

Simi lar  r e s u l t s  corresponding to the per iod indicated by number 2 

and 3 a r e  a lso shown in F i g .  15 and 16, respect ively,  where  full line 

and dashed line cor respond to U, and L, respectively.  Since sensit ivity 

of the r eco rde r  is not un i form,  cor rec ted  value fo r  the sensit i t ivy of the 

r e c o r d e r  is a l so  shown in Fig .  16 by a curved UhC. 

replot ted against  per iod ( in  sec.) in Fig. 17, which shows the mos t  dom- 

inating per iod of the wave in this  stage of wave appearance is around 

50 sec and has  a long tail towards longer period. Sharp cut-off i n  sho r t  

per iod around 10 s e c  might be,  however, in te rpre ted  as due to a l imi ta -  

tion in  digitization of the data. 

U, in  Fig.  16 is 
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Figure 14-Power spectrum corresponding to the data used for Fig.  13, where L, is raw estimate 
(without fi lter) and U, i s  smoothed value eliminating noise. 
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T = o o  50 25 16.7 12.5 10 sec 

Figure 16-The same as F ig .  14 and 15, for the period of last phase, 
shown by number 3 in F ig .  1 1 .  

44 



uh 1.4 

1.2 

1 .o 

0.8 

0.6 

0.4 

0.2 

0.a 
T=O 10 20 30 40 50 60 70 80 90 lOOsec 

‘U 
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0.2 Wave F o r m  and -Airy Phase  

-4s can be seen f r o m  Fig. 11, during a per iod extending f r o m  around 

21:20 UT to 22:30 U T ,  p r e s s u r e  wave shows a c lear  sinusoidal osc i l la -  

tion, while before and af ter  this period the waveforms a r e  s m e a r e d  by 

superposed short  waves.  

velocity on the period of p r e s s u r e  wave in the i so thermal  a tmosphere  

is  opposite each other  between acoustic mode and thermobar ic  mode,  

leaving a minimum around 300 sec for 300°K a tmosphere ,  where the 

group velocity of both waves is zero.  

As shown in Fig.  1 ,  dcpendence of group 

According to Pfeffer and Zarichny (1963) ,  s eve ra l  minima appear  

around this period in the actual  a tmosphe re ,  corresponding to different 

normal  mode propagations. I t  i s  c l ea r ,  however,  that  even in the non- 

i so thermal  a tmosphere a t  a cer ta in  distant point f r o m  the sou rce ,  the 

acoustic mode of p r e s s u r e  wave should be observed  shor t  wave f i r s t  

and longer wave l a t e r ,  while thermobar ic  mode of wave a r r i v e s  long 

wave f i r s t  and shor t e r  one follows in the las t .  Although the effective 

height of propagation is different by wave-period (Pfeffer and Zarichny,  

1963) ,  it  is possible that a t  a cer ta in  point f r o m  the source  two types 

of wave overlap with s a m e  per iod (i.e., the same horizontal  wave length) 

for  a cer ta in  duration, which cor responds  to minima of group velocit ies.  

AS discussed in previous section (sect ion 4.1 and 4.2), in the non- 

isothermal  a tmosphere,  t he re  are  domains where  both mode of a tmos -  

pheric  wave continues. 

sinusoidal oscil lation of p r e s s u r e  wave during a u r o r a l  act ivi t ies  can  be 

The re fo re ,  an  occasional  appearance of c l ea r  
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ascr ibed  to this mechanism,  which i s  quite s imi la r  to the so-called 

Airy Phase  effect observed in  a sound wave propagation under shallow 

water  ( P e k e r i s ,  1948). 

7. Discussion 

As pointed out in the introduction, the amplitude of p r e s s u r e  wave 

associated with au ro ra l  activity observed a t  the ground is of the o r d e r  

of one to ten dynes /cm2 and dominating period is within the acoustic 

mode, i.e., most ly  between 40 to  80 sec. 

tudes of blast  wave produced by volcanic, l a rge  meteori te  and bomb 

explosion a r e  o rde r  of severa l  hundred to thousand dynes/cm2 (i.e., 

0.3 to 3 mb) at the ground m o r e  than 1,000 k m  f rom the source ,  and 

per iod of the wave is in gravity mode ( m o r e  than 5 min). 

fe rence  between these types of atmospheric waves is seen  in t rend of 

wave form.  

sho r t e r  wave f i r s t  (Chrzanowski e t  a1 1961), while p r e s s u r e  waves de- 

tected by microbarograph af ter  large explosion show the a r r i v a l  of 

longer wave first and the shor te r  wave la te r  (Hunt e t  a1 1960). 

On the other hand, the ampli-  

Another dif- 

Namely, mos t  of au ro ra l  p r e s s u r e  wave appears  with 

These a r e  exactly what we can expect f r o m  dispers ion relat ions 

However, as for  both modes of a tmospheric  p re s su re  wave (Fig.  1). 

shown in present  paper ,  au ro ra l  activity can produce both types of 

a tmospher ic  waves. 

phase effect, which i s  known in a sound propagation in shallow water  

( P e k e r i s ,  1948). 

Moreover ,  in this ca se ,  we s e e  the so-called Airy 
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One of the important problems,  which i s  omitted in this paper  is 

the  mechanism of wave-generation. This is briefly discussed in previous 

paper (M-W, l ) ,  and we concluded that one of the most  effective and plaus-  

ible mechanisms i s  periodic heating of E-region by impinging a u r o r a l  

e lectrons.  

energy flux i s  required to produce the infrasonic waves with amplitude 

1 dyne/cm2 a t  the ground. In the i so thermal  a tmosphere ,  however, these 

thermally excited atmospheric  waves attenuate rapidly outside the source  

region par t icular ly  at  shor t  periods.  In the actual a tmosphere ,  there  a r e  

two channels for ducting corresponding to two tempera ture  minima a t  the 

tropopause and the mesopause ( F i g .  4). 

In the i so thermal  a tmosphere a t  least  100 e r g / c m 2  sec  of 

The minimum energy flux required to produce observable  p r e s s u r e  

waves a t  the ground is therefore  one o r  two o rde r  of magnitude higher 

than the one est imated for  the i so thermal  a tmosphere  as can be seen  

f r o m  Fig. 12  and 14. 

It i s  a l so  shown that effective duct for  100 sec  p r e s s u r e  wave in the 

polar a tmosphere is the upper channel in s u m m e r  and the lower one in 

winter ( F i g .  9 a and b). 
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Captions 

Fig. 1. 

( T  = 300'K and C = 0.347 

ful l  lines and dashed l ines  a r e  phase velocit ies and group velocit ies,  

r e  s pectively. 

Horizontal wave velocit ies i n  the i so thermal  a tmosphere  

k m / s e c )  against  per iod of the wave 7 (in.sec) 

Fig. 2. Hines '  angular frequency and Brunt-Varsola  angular f re -  

quency wB as a function of altitude z ,  for  the ver t ica l  t empera tu re  

distribution T(z) shown by full line in Fig.  4. 

A 

Fig. 3. 

shown in Fig.  4 by dashed line. 

The s a m e  as  Fig. 2 for  the ver t ica l  t empera ture  distribution 

Fig. 4. 
region for  s u m m e r  (full line) and for  winter (dashed line). 

Vertical  t empera ture  distribution and lapse r a t e  in the polar  

Fig.  5. 

thermal  a tmosphere  in the different tempera ture .  k and stand for  

the wave number in horizontal  (x-axis)  direct ion and ver t ica l  (z-axis)  

direction, respectively . 

Cross-sec t ion  of propagation sur face  in x-z  plane for  the i so-  

Fig. 6. 

I A 1 ,  and in the bottom layer  

distribution) shown in the r ight  hand side.  

indicate I A I and I C 1 ,  respectively.  The ra t io  of horizontal  wave 

number in the top l aye r ,  k,  to the c r i t i ca l  value kc is taken as horizontal  

ax is ,  which cor responds  also to the direct ion of propagation i.e., 

k /kc  2 c o s 1  B c ,  where 0,  is a zenith angle of propagation direction. 

Amplitudes of upward propagating waves in the middle layer  

I C I for  a model  a tmosphere  ( t empera tu re  

Ful l  line and dashed line 

Fig. 7. 

layer  as  shown in the r ight  hand side.  

The same  a s  Fig. 6 except d i f fe ren t  t empera tu re  in the middle 

I 



. 

Fig. 8. 

ent tempera tures .  Upper left and lower right domain corresponds to 

.acoustic wave and internal  gravity (or  thermobar ic )  wave, respectively.  

Diagnostic d iagram for the isothermal  a tmospheres  with differ-  

F i g .  9 (a ) .  Square of the index of refraction K2 for infrasonic waves 

with period 100 sec  with summert ime polar a tmosphere,  which t em-  

pera ture  distribution i s  shown in F i g .  4 by full line. 

Fig. 9 (b). The same  a s  F ig .  9 ( a ) ,  except for  winter t ime polar a tmos -  

phere ,  which tempera ture  distribution is  shown in Fig.  4 by dashed l ine 

Fig.  10. Resul ts  of numerical  integration of wave equation with respec '  

to a model a tmosphere,  of which ver t ical  t empera ture  distributions a r e  

shown in the left side. Explanation of the notation is  given in  text. 

Fig.  11. 

the NBS-stations in Washington, D.C. C.V.N. correspond to data obtained 

a t  CARD, VILL and NAVE station shown in the paper by Chrzanowski 

e t  a1 (1961), respectively and the attached l ines  in the F igure  shows the 

shifting of t ime between these records to fix the a r r i v a l  direction. 

Superposed r eco rds  of traveling p r e s s u r e  waves observed a t  

Fig.  12. Kp-index during the period f r o m  July 13 to July 18, 1960. 

a r r o w  indicated the period, when power spec t rum is applied for  the 

r e c o r d s  shown in F i g .  11. 

An 

Fig. 13. 

per iod shown in Fig. 11. 

of shifting m, a r e  744 and 60, respectively,  while digitized reading 

in te rva l  At is 15 sec.  

An example of non-normalized auto-correlat ion curve  for  

The total  number of reading N, and number 

F i g .  14. 

where  L, is r aw es t imate  (without f i l ter)  and U, is smoothed value 

eliminating noises.  

Power spec t rum corresponding to the data used for  Fig.  13, 



Fig. 15. 
11. 

Power spec t rum for the period indicated by number 2 in Fig. 

F i g .  16.  

shown by number 3 in Fig. 11. 

The same as Fig.  14 and 15, for  the per iod of last phase,  

Fig. 17 .  

in sec .  

Wave spec t rum of U, in Fig.  16  plotted against  per iod *r 


